Brinicle' ice finger of death filmed in Antarctic by BBC
To see the Frozen Planet which explores this Icicle Of Death - it's on at 21:00 GMT on Wednesday, 23 November on BBC One.
As brine from the sea ice sinks, a 'brinicle' forms threatening life on
the sea floor with a frosty fate. A bizarre underwater "icicle of
death" has been filmed by a BBC crew.
With timelapse cameras, specialists recorded salt water being excluded from the sea ice and sinking.
The temperature of this sinking brine, which was well below 0C, caused the water to freeze in an icy sheath around it.
Where the so-called "brinicle" met the sea bed, a web of ice formed that
froze everything it touched, including sea urchins and starfish.
The unusual phenomenon was filmed for the first time by cameramen Hugh
Miller and Doug Anderson for the BBC One series Frozen Planet.
HOW DOES A BRINICLE FORM?
Dr Mark Brandon Polar oceanographer, The Open University
Freezing sea water doesn't make ice like the stuff you grow in your
freezer. Instead of a solid dense lump, it is more like a
seawater-soaked sponge with a tiny network of brine channels within it.
In winter, the air temperature above the sea ice can be below -20C,
whereas the sea water is only about -1.9C. Heat flows from the warmer
sea up to the very cold air, forming new ice from the bottom. The salt
in this newly formed ice is concentrated and pushed into the brine
channels. And because it is very cold and salty, it is denser than the
water beneath.
The result is the brine sinks in a descending plume. But as this
extremely cold brine leaves the sea ice, it freezes the relatively fresh
seawater it comes in contact with. This forms a fragile tube of ice
around the descending plume, which grows into what has been called a
brinicle.
Brinicles are found in both the Arctic and the Antarctic, but it has to
be relatively calm for them to grow as long as the ones the Frozen
Planet team observed.
The icy phenomenon is caused by cold, sinking brine, which is more dense
than the rest of the sea water. It forms a brinicle as it contacts
warmer water below the surface.
Mr Miller set up the rig of timelapse equipment to capture the growing
brinicle under the ice at Little Razorback Island, near Antarctica's
Ross Archipelago.
"When we were exploring around that island we came across an area where
there had been three or four [brinicles] previously and there was one
actually happening," Mr Miller told BBC Nature.
The diving specialists noted the temperature and returned to the area as soon as the same conditions were repeated.
"It was a bit of a race against time because no-one really knew how fast they formed," said Mr Miller.
"The one we'd seen a week before was getting longer in front of our eyes... the whole thing only took five, six hours."
Against the odds
Hugh and cameras capture the brinicle (c) D Anderson Hugh had little room to position himself and the cameras under the ice
The location - beneath the ice off the foothills of the volcano Mount Erebus, in water as cold as -2C - was not easy to access.
"That particular patch was difficult to get to. It was a long way from
the hole and it was quite narrow at times between the sea bed and the
ice," explained Mr Miller.
"I do remember it being a struggle... All the kit is very heavy because
it has to sit on the sea bed and not move for long periods of time."
As well as the practicalities of setting up the equipment, the
filmmakers had to contend with interference from the local wildlife.
The large weddell seals in the area had no problems barging past and breaking off brinicles as well as the filming equipment.
"The first time I did a timelapse at the spot a seal knocked it over," said Mr Miller.
But the team's efforts were eventually rewarded with the first ever footage of a brinicle forming.